z-logo
Premium
The Visible Intensified Cameras for Plasma Imaging in the TJ‐II Stellarator
Author(s) -
de la Cal E.,
Carralero D.,
de Pablos J. L.,
Alonso A.,
Rios L.,
García Sánchez P.,
Hidalgo C.
Publication year - 2011
Publication title -
contributions to plasma physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.531
H-Index - 47
eISSN - 1521-3986
pISSN - 0863-1042
DOI - 10.1002/ctpp.201000039
Subject(s) - stellarator , plasma , image intensifier , physics , optics , bremsstrahlung , plasma diagnostics , noise (video) , image sensor , photon , computer science , artificial intelligence , image (mathematics) , nuclear physics
Visible cameras are widely used in fusion experiments for diagnosis and for machine safety issues. They are generally used to monitor the plasma emission, but are also sensible to surface Blackbody radiation and Bremsstrahlung. Fast or high speed cameras capable of operating in the 10 5 frames per second speed range are today commercially available and offer the opportunity to plasma fusion researchers of two‐dimensional (2D) imaging of fast phenomena such as turbulence, ELMs, disruptions, dust, etc. The tracking of these fast phenomena requires short exposure times down to the μ s range and the light intensity can be often near the signal to noise ratio limit especially in low plasma emission regions such as the far SOL Additionally, when using interference filters to monitor, e.g. impurity line emission, the photon flux is strongly reduced and the emission cannot be imaged at high speed. Therefore, the use of image intensifiers that amplify the light intensity onto the camera sensor can be of great help. The present work describes the use of intensifiers in the visible fast cameras of TJ‐II stellarator. We have achieved spectroscopic plasma imaging of filtered impurity atomic line emission at short exposure times down to the 10 μ s range depending on atomic line and concentration. Additionally, plasma movies at velocities of 2x10 5 frames per second near the camera operation limit can be recorded with exposure times well below 1 μ s with sufficient signal to noise ratio. Although an increasing degradation of the image quality appears when raising the light amplification, an effective gain of up to two orders of magnitude of the light intensity is feasible for many applications (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here