Premium
Scaling Design and Experimental Study on Hall Thrusters with Curved Magnetic Field
Author(s) -
Ding Y. J.,
Yu D. R.,
Jia D. C.,
Yan G. J.,
Li H.
Publication year - 2011
Publication title -
contributions to plasma physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.531
H-Index - 47
eISSN - 1521-3986
pISSN - 0863-1042
DOI - 10.1002/ctpp.201000021
Subject(s) - magnetic field , scaling , hall effect , physics , power (physics) , field (mathematics) , momentum (technical analysis) , mechanics , computational physics , classical mechanics , mathematics , geometry , quantum mechanics , finance , pure mathematics , economics
The existing scaling theories of Hall thrusters are based on the hypothesis of a one‐dimensional straight magnetic field, which is not suitable for the design of modern thrusters with a two‐dimensional curved magnetic field. In this paper, using the equation analysis method, we derive new similarity criterions in a curved magnetic field by analyzing the momentum equations of charged particles; consequently, we propose a new modeling design method for Hall thrusters with a constant discharge voltage. This method is further validated by experiments. A designed model with a power of 1.5 kW is made based on our proposed method from a prototype model with a power of 1 kW. The experimental results demonstrate that these two thrusters have little differences in performance and physical processes as expected from the scaling. Therefore, our method is well suited for designing a Hall thruster with a curved magnetic field (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)