Premium
ASCOT Modelling of Ripple Effects on Toroidal Torque
Author(s) -
Salmi A.,
Johnson T.,
Parail V.,
Heikkinen J.,
Hynönen V.,
Kiviniemi T. P.,
KurkiSuonio T.
Publication year - 2008
Publication title -
contributions to plasma physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.531
H-Index - 47
eISSN - 1521-3986
pISSN - 0863-1042
DOI - 10.1002/ctpp.200810013
Subject(s) - ripple , toroid , plasma , physics , torque , rotation (mathematics) , magnetic field , torque ripple , atomic physics , toroidal field , tokamak , monte carlo method , ion , field (mathematics) , enhanced data rates for gsm evolution , mechanics , computational physics , nuclear physics , voltage , computer science , thermodynamics , telecommunications , direct torque control , statistics , mathematics , quantum mechanics , artificial intelligence , pure mathematics , induction motor
Toroidal field ripple, δ =(B max ‐B min )/(B max +B min ), in ITER will be relatively large, about 0.5% at the outer midplane. Due to the importance of toroidal rotation on plasma stability and confinement it is important to understand the consequences of a non‐negligible ripple field on rotation. Guiding centre following Monte Carlo code ASCOT is used to evaluate the torque on plasma from co‐current NBI in presence of toroidal magnetic field ripple. Simulations are made for a JET discharge from 2007 Ripple Campaign aimed to clarify the effect of ripple on fusion plasmas in preparation for ITER. ASCOT results show large reduction of torque from co‐NBI and negative torque from thermal ions, which together could create a counter rotating edge plasma. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)