Premium
Anfachung und Dämpfung von Ionisationswellen in MHD‐Kanälen und ihr Einfluß auf die effektive elektrische Leitfähigkeit, den effektiven Hall‐Parameter und die mittlere Elektronentemperatur
Author(s) -
Valentini H.B.
Publication year - 1970
Publication title -
beiträge aus der plasmaphysik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.531
H-Index - 47
eISSN - 1521-3986
pISSN - 0005-8025
DOI - 10.1002/ctpp.19700100303
Subject(s) - physics , ionization , magnetic field , hall effect , condensed matter physics , atomic physics , electron , isotropy , ion , optics , quantum mechanics
The phase velocity, the amplification rate and the critical Hall parameter are theoretically determined for ionization waves in a weakly ionized plasma streaming across a strong external magnetic field and bearing a current flowing perpendicular to both the magnetic field and the stream velocity. The investigations hold for seeded rare gases at any degree of seed ionization. The critical Hall parameter β c depends on the degree of ionization, the ionization energy and the temperatures of electron gas T 0 and neutral gas T g · β c is always greater than one, if 0 < T 0 — T g ≪ T 0 holds. The three‐dimensional treatment indicates the existence of waves with a nonvanishing wave vector component in the direction of the magnetic field. The influence of ionization waves on mean current density, mean Hall field intensity and mean electron temperature is determined up to second order terms in the relative fluctuations of the electron temperature. The amplification of ionization waves reduces the effective electric conductivity, the effective Hall parameter and the mean electron temperature compared to the undisturbed state. Similar results are also obtained for steady state homogeneous isotropic turbulence and a special case of axially symmetric turbulence. Furthermore, a component of the electric field in direction or in opposite direction to the magnetic field vector may be generated by non isotropic and non homogeneous turbulence.