z-logo
open-access-imgOpen Access
Interleukin enhancer‐binding factor 2 promotes cell proliferation and DNA damage response in metastatic melanoma
Author(s) -
Zhang Xiaoqing,
Bustos Matias A.,
Gross Rebecca,
Ramos Romela Irene,
Takeshima TehLing,
Mills Gordon B.,
Yu Qiang,
Hoon Dave S. B.
Publication year - 2021
Publication title -
clinical and translational medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.125
H-Index - 1
ISSN - 2001-1326
DOI - 10.1002/ctm2.608
Subject(s) - gene knockdown , melanoma , cancer research , biology , cell growth , medicine , cell culture , genetics
Background 1q21.3 amplification, which is frequently observed in metastatic melanoma, is associated with cancer progression. Interleukin enhancer‐binding factor 2 ( ILF2 ) is located in the 1q21.3 amplified region, but its functional role or contribution to tumour aggressiveness in cutaneous melanoma is unknown. Methods In silico analyses were performed using the TCGA SKCM dataset with clinical annotations and three melanoma microarray cohorts from the GEO datasets. RNA in situ hybridisation and immunohistochemistry were utilised to validate the gene expression in melanoma tissues. Four stable melanoma cell lines were established for in vitro ILF2 functional characterisation. Results Our results showed that the ILF2 copy number variation (CNV) is positively correlated with ILF2 mRNA expression ( r  = 0.68, p  < .0001). Additionally, ILF2 expression is significantly increased with melanoma progression ( p  < .0001), and significantly associated with poor overall survival for metastatic melanoma patients ( p  = .026). The overexpression of ILF2 (ILF2‐OV) promotes proliferation in metastatic melanoma cells, whereas ILF2 knockdown decreases proliferation by blocking the cell cycle. Mechanistically, we demonstrated the interaction between ILF2 and the splicing factor U2AF2, whose knockdown reverses the proliferation effects mediated by ILF2‐OV. Stage IIIB–C melanoma patients with high ILF2 ‐ U2AF2 expression showed significantly shorter overall survival ( p  = .024). Enhanced ILF2/U2AF2 expression promotes a more efficient DNA‐damage repair by increasing RAD50 and ATM mRNA expression. Paradoxically, metastatic melanoma cells with ILF2‐OV were more sensitive to ATM inhibitors. Conclusion Our study uncovered that ILF2 amplification of the 1q21.3 chromosome is associated with melanoma progression and triggers a functional downstream pathway in metastatic melanoma promoting drug resistance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here