z-logo
open-access-imgOpen Access
IL‐17 drives salivary gland dysfunction via inhibiting TRPC1‐mediated calcium movement in Sjögren’s syndrome
Author(s) -
Xiao Fan,
Du Wenhan,
Zhu Xiaoxia,
Tang Yuan,
Liu Lixiong,
Huang Enyu,
Deng Chong,
Luo Cainan,
Han Man,
Chen Ping,
Ding Liping,
Hong Xiaoping,
Wu Lijun,
Jiang Quan,
Zou Hejian,
Liu Dongzhou,
Lu Liwei
Publication year - 2021
Publication title -
clinical and translational immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.321
H-Index - 34
ISSN - 2050-0068
DOI - 10.1002/cti2.1277
Subject(s) - salivary gland , saliva , endocrinology , secretion , submandibular gland , medicine , inflammation , receptor , immunology , chemistry , biology
Objectives This study aims to determine a role of interleukin‐17A (IL‐17) in salivary gland (SG) dysfunction and therapeutic effects of targeting IL‐17 in SG for treating autoimmune sialadenitis in primary Sjögren’s syndrome (pSS). Methods Salivary IL‐17 levels and IL‐17‐secreting cells in labial glands of pSS patients were examined. Kinetic changes of IL‐17‐producing cells in SG from mice with experimental Sjögren’s syndrome (ESS) were analysed. To determine a role of IL‐17 in salivary secretion, IL‐17‐deficient mice and constructed chimeric mice with IL‐17 receptor C (IL‐17RC) deficiency in non‐hematopoietic and hematopoietic cells were examined for saliva flow rates during ESS development. Both human and murine primary SG epithelial cells were treated with IL‐17 for measuring cholinergic activation‐induced calcium movement. Moreover, SG functions were assessed in ESS mice with salivary retrograde cannulation of IL‐17 neutralisation antibodies. Results Increased salivary IL‐17 levels were negatively correlated with saliva flow rates in pSS patients. Both IL‐17‐deficient mice and chimeric mice with non‐hematopoietic cell‐restricted IL‐17RC deficiency exhibited no obvious salivary reduction while chimeric mice with hematopoietic cell‐restricted IL‐17RC deficiency showed significantly decreased saliva secretion during ESS development. In SG epithelial cells, IL‐17 inhibited acetylcholine‐induced calcium movement and downregulated the expression of transient receptor potential canonical 1 via promoting Nfkbiz mRNA stabilisation. Moreover, local IL‐17 neutralisation in SG markedly attenuated hyposalivation and ameliorated tissue inflammation in ESS mice. Conclusion These findings identify a novel function of IL‐17 in driving salivary dysfunction during pSS development and may provide a new therapeutic strategy for targeting SG dysfunction in pSS patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here