z-logo
open-access-imgOpen Access
Robust correlations across six SARS‐CoV‐2 serology assays detecting distinct antibody features
Author(s) -
Rowntree Louise C,
Chua Brendon Y,
Nicholson Suellen,
Koutsakos Marios,
Hensen Luca,
Douros Celia,
Selva Kevin,
Mordant Francesca L,
Wong Chinn Yi,
Habel Jennifer R,
Zhang Wuji,
Jia Xiaoxiao,
Allen Lily,
Doolan Denise L,
Jackson David C,
Wheatley Adam K,
Kent Stephen J,
Amanat Fatima,
Krammer Florian,
Subbarao Kanta,
Cheng Allen C,
Chung Amy W,
Catton Mike,
Nguyen Thi HO,
Sandt Carolien E,
Kedzierska Katherine
Publication year - 2021
Publication title -
clinical and translational immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.321
H-Index - 34
ISSN - 2050-0068
DOI - 10.1002/cti2.1258
Subject(s) - serology , avidity , antibody , multiplex , immunology , virology , isotype , biology , monoclonal antibody , genetics
Objectives As the world transitions into a new era of the COVID‐19 pandemic in which vaccines become available, there is an increasing demand for rapid reliable serological testing to identify individuals with levels of immunity considered protective by infection or vaccination. Methods We used 34 SARS‐CoV‐2 samples to perform a rapid surrogate virus neutralisation test (sVNT), applicable to many laboratories as it circumvents the need for biosafety level‐3 containment. We correlated results from the sVNT with five additional commonly used SARS‐CoV‐2 serology techniques: the microneutralisation test (MNT), in‐house ELISAs, commercial Euroimmun‐ and Wantai‐based ELISAs (RBD, spike and nucleoprotein; IgG, IgA and IgM), antigen‐binding avidity, and high‐throughput multiplex analyses to profile isotype, subclass and Fc effector binding potential. We correlated antibody levels with antibody‐secreting cell (ASC) and circulatory T follicular helper (cTfh) cell numbers. Results Antibody data obtained with commercial ELISAs closely reflected results using in‐house ELISAs against RBD and spike. A correlation matrix across ten measured ELISA parameters revealed positive correlations for all factors. The frequency of inhibition by rapid sVNT strongly correlated with spike‐specific IgG and IgA titres detected by both commercial and in‐house ELISAs, and MNT titres. Multiplex analyses revealed strongest correlations between IgG, IgG1, FcR and C1q specific to spike and RBD. Acute cTfh‐type 1 cell numbers correlated with spike and RBD‐specific IgG antibodies measured by ELISAs and sVNT. Conclusion Our comprehensive analyses provide important insights into SARS‐CoV‐2 humoral immunity across distinct serology assays and their applicability for specific research and/or diagnostic questions to assess SARS‐CoV‐2‐specific humoral responses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here