z-logo
Premium
Two‐switch flyback PWM DC‐DC converter in continuous‐conduction mode
Author(s) -
MurthyBellur Dakshina,
Kazimierczuk Marian K.
Publication year - 2011
Publication title -
international journal of circuit theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.364
H-Index - 52
eISSN - 1097-007X
pISSN - 0098-9886
DOI - 10.1002/cta.690
Subject(s) - flyback converter , flyback transformer , flyback diode , buck–boost converter , forward converter , electrical engineering , buck converter , electronic engineering , boost converter , transformer , engineering , voltage
The two‐switch flyback DC‐DC converter is an extended version of the conventional single‐switch flyback converter. An additional switch and two clamping diodes serve as a simple, but an effective way to limit the switch overvoltages, which occur in the conventional single‐switch flyback converter due to the ringing of the resonant circuit formed by the transformer leakage inductance and the transistor output capacitance. The clamping diodes in the two‐switch flyback topology clamp the maximum voltage across each switch equal to the DC input voltage. This paper presents a detailed steady‐state analysis and design procedure of the diode‐clamped two‐switch flyback converter operated in continuous‐conduction mode (CCM). The power loss in each component of the two‐switch flyback converter is compared with those of the single‐switch flyback converters with and without RCD clamp, and is presented in a tabular form. The two‐switch flyback converter was bread‐boarded to validate the theoretical analysis. Experimental results from a 10 V/30 W, 100 kHz laboratory prototype verified that the maximum switch voltage is limited to the DC input voltage. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here