Premium
Lightweight network and parallel computing for fast pedestrian detection
Author(s) -
Wu Jianpeng,
Men Yao,
Chen DeSheng
Publication year - 2021
Publication title -
international journal of circuit theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.364
H-Index - 52
eISSN - 1097-007X
pISSN - 0098-9886
DOI - 10.1002/cta.2903
Subject(s) - computer science , pedestrian detection , object detection , software deployment , convolutional neural network , pedestrian , task (project management) , computation , artificial intelligence , object (grammar) , set (abstract data type) , deep learning , real time computing , computer engineering , pattern recognition (psychology) , algorithm , operating system , engineering , systems engineering , transport engineering , programming language
Summary In recent years, researchers have made great efforts in computer vision task (e.g., object detection) with the widely use of convolutional neural networks (CNNs). However, object detection algorithms based on CNNs suffer from high computation cost even on the high‐performance computers. In addition, with the development of high‐resolution videos, the deployment of object detection algorithms becomes more and more difficult because of the large amount of data, let alone the portable platforms, such as unmanned aerial vehicles (UAVs). In this paper, we research a lightweight network on portable platform for outdoor tiny pedestrian detection. Concretely, we first set up a training dataset manually for lack of tiny pedestrian samples in common datasets. We provide a lightweight network, and then, parallel computing is introduced to make the most of the advantage of GPU. Finally, our method can achieve real‐time performance on Jetson TX2. Experimental results verify that the proposed model has promising performance in tiny pedestrian detection designed for portable GPU platforms.