Premium
Nano–power‐integrated precision rectifiers for implantable medical devices
Author(s) -
Alvarez Emilio,
Arnaud Alfredo,
Gak Joel,
Miguez Matías
Publication year - 2021
Publication title -
international journal of circuit theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.364
H-Index - 52
eISSN - 1097-007X
pISSN - 0098-9886
DOI - 10.1002/cta.2812
Subject(s) - rectifier (neural networks) , precision rectifier , cmos , electrical engineering , amplifier , transconductance , electronic engineering , comparator , voltage , engineering , transistor , bandwidth (computing) , operational amplifier , computer science , power factor , telecommunications , stochastic neural network , machine learning , recurrent neural network , artificial neural network
Summary Two ultralow power CMOS full‐wave precision rectifiers aimed at analog signal processing in implantable medical devices are presented. The rectifiers require no diodes and utilize a single or two transconductors (operational transconductance amplifier [OTA]) as the active element, to reduce power consumption to a minimum. First, a voltage‐to‐current rectifier consuming only a 120‐nA supply current is presented and later is used to estimate the average AC amplitude of a piezoelectric accelerometer output (0.5–15‐Hz bandwidth) in an adaptive pacemaker. This rectifier is based on a linearized transconductor and a comparator to toggle the output current sign. Then, a novel voltage rectifier consuming less than 10 nA is presented based on a single nanopower OTA and a pass transistor and later is utilized in a pacemaker's cardiac sensing channel (60–200‐Hz bandwidth) circuit, incorporating the rectifier to detect positive and negative voltage signal spikes. Both rectifiers were designed in a 0.6‐μm CMOS technology, fabricated, and tested, and the measurement results closely fit the expected performance.