z-logo
Premium
An accurate and power‐efficient period‐modulator‐based interface for grounded capacitive sensors
Author(s) -
Ahmadpour Bijargah Arash,
Heidary Ali,
Torkzadeh Pooya,
Nihtianov Stoyan
Publication year - 2019
Publication title -
international journal of circuit theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.364
H-Index - 52
eISSN - 1097-007X
pISSN - 0098-9886
DOI - 10.1002/cta.2642
Subject(s) - electronic engineering , cmos , capacitance , effective number of bits , relaxation oscillator , capacitive sensing , electrical engineering , engineering , voltage , computer science , voltage controlled oscillator , physics , electrode , quantum mechanics
Summary A low‐power and high‐resolution capacitance‐to‐period converter (CPC) based on period modulation (PM) for subnanometer displacement measurement systems is proposed. The presented circuit employs the interface developed in a previous work, “a grounded capacitance‐to‐voltage converter (CVC) based on a zoom‐in structure,” further improving its performance through a symmetrical design of the applied autocalibration technique. The scheme is based on the use of a relaxation oscillator. To minimize the error contributed by the CPC circuitry, different precision techniques such as chopping, autocalibration, and active shielding are applied. The proposed CPC is realized in a 0.18‐μm complementary metal‐oxide‐semiconductor (CMOS) technology, occupies an area of 0.5 mm 2 , and consumes 135 μA from a 2‐V power supply. In order to achieve optimal performance and avoid overdesigning, a noise estimation of various parts of the CPC has been done. Accordingly, for a 10‐pF sensor capacitance, the overall CPC demonstrates a capacitance resolution of 0.5 fF for a latency of 128 microseconds, corresponding to an effective number of bits (ENOB) of 12.5 bits and an energy efficiency of 6 pJ/step. The nonlinearity error has been evaluated as well, resulting in a less than 0.03% full‐scale span (FSS).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom