Premium
A 1‐Gbps reference‐less burst‐mode CDR with embedded TDC in a 65‐nm CMOS process
Author(s) -
Wang Yuan,
Jiang Mengying,
Liu Baoguang,
Jia Song,
Zhang Xing
Publication year - 2018
Publication title -
international journal of circuit theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.364
H-Index - 52
eISSN - 1097-007X
pISSN - 0098-9886
DOI - 10.1002/cta.2490
Subject(s) - cmos , clock generator , burst mode (computing) , current mode logic , computer science , electronic engineering , jitter , inverter , computer hardware , electrical engineering , clock signal , engineering , voltage
Summary A reference‐less all‐digital burst‐mode clock and data recovery circuit (CDR) is proposed in the paper. The burst‐mode CDR includes a coarse and a fine time‐to‐digital converter (TDC) with embedded phase generator. A low‐power current‐starved inverter is employed as the delay unit of the fine TDC to acquire the high measurement resolution. A calibration method to diminish the inherent delay is used to reduce the quantization error of the recovery clock. The proposed CDR is fabricated in a 65‐nm CMOS process. Experiment results show that the CDR operates from 0.9 to 1.1 Gbps and have a 13‐bit consecutive identical digits (CIDs) tolerance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom