z-logo
Premium
A high‐voltage gain nonisolated noncoupled inductor based multi‐input DC‐DC topology with reduced number of components for renewable energy systems
Author(s) -
Varesi Kazem,
Hosseini Seyed Hossein,
Sabahi Mehran,
Babaei Ebrahim
Publication year - 2018
Publication title -
international journal of circuit theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.364
H-Index - 52
eISSN - 1097-007X
pISSN - 0098-9886
DOI - 10.1002/cta.2428
Subject(s) - topology (electrical circuits) , inductor , capacitor , voltage , diode , network topology , high voltage , photovoltaic system , computer science , electronic engineering , electrical engineering , engineering , operating system
Summary This paper proposes a modular nonisolated noncoupled inductor‐based high‐voltage gain multi‐input DC‐DC converter. Despite the high‐voltage gain of the proposed topology, the average of normalized voltage stress (NVS) on its switches/diodes is low. This property leads to less loss and cost of switches/diodes. Using the same number of components, the proposed topology produces higher voltage gains, in comparison with recently presented high step‐up topologies. Also, the proposed topology utilizes less number of components (capacitors, inductors, diodes, and switches) for producing a desired voltage gain, which can reduce the size, mass, cost, complexity, and losses and improve the efficiency of converter. Continuous current of input sources is another main advantage of the proposed topology. All the abovementioned characteristics have made the proposed topology very suitable for renewable energy systems (or even hybrid/electric vehicles). Design considerations of the proposed topology have also been presented. For better evaluation, the proposed topology has been compared with some of recently presented high step‐up structures, from viewpoints of producible voltage gain, number of components, and normalized voltage stress (NVS) on switches/diodes. Finally, the prototype of 2‐input version has been experimentally implemented. Obtained experimental results confirm appropriate performance of the proposed topology.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here