z-logo
Premium
Gain compression improvement on low‐power cascaded current reuse LNAs
Author(s) -
Silva Pereira Marco,
Vaz João Caldinhas,
Leme Carlos Azeredo,
Freire João Costa
Publication year - 2016
Publication title -
international journal of circuit theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.364
H-Index - 52
eISSN - 1097-007X
pISSN - 0098-9886
DOI - 10.1002/cta.2191
Subject(s) - electronic engineering , current (fluid) , reuse , power (physics) , electrical engineering , compression (physics) , computer science , engineering , materials science , physics , quantum mechanics , composite material , waste management
Summary Current reuse low‐noise‐amplifiers (CRLNAs) have been the norm to achieve high‐gain and low‐noise figure under low‐power budgets. However, conventional CRLNAs suffer from a severe lack of large‐signal linearity, especially in conventional cascaded CRLNAs. This main drawback is related with the typical biasing method imposed in the output stage. To prove our point, a large‐signal study is performed for a single stage common‐source in two distinct biasing situations: voltage biased and current biased. On the basis of the gathered results, a new CRLNA solution is proposed to relief the large‐signal bottleneck. The suggested design is analyzed in a 0.13 µm complementary metal–oxide–semiconductor (CMOS) standard process. Post‐layout simulations show 8 dB compression point improvement compared with the conventional CRLNA solution. The CRLNA draws a current of 650 μA from a 1.2 V supply. At 2.45 GHz, a power gain of 25.3 dB and a NF of 2.3 dB are achieved, while the IIP3 is −9 dBm. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom