z-logo
Premium
A 0.7‐dB NF, +8.2‐dBm IIP3 CMOS low noise amplifier using frequency selective feedback
Author(s) -
Jin Tae Hwan,
Han Hong Gul,
Kim Tae Wook
Publication year - 2016
Publication title -
international journal of circuit theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.364
H-Index - 52
eISSN - 1097-007X
pISSN - 0098-9886
DOI - 10.1002/cta.2059
Subject(s) - intermodulation , cmos , amplifier , electrical engineering , cascode , capacitor , noise figure , low noise amplifier , electronic engineering , engineering , voltage
Summary A CMOS amplifier employing the frequency selective feedback technique using a shunt feedback capacitor is designed and measured. The proposed amplifier can achieve a high IIP3 (input referred third‐order intercept point) by reducing the third‐ and second‐order nonlinearity contributions to the IMD3 (third‐order intermodulation distortion), which is accomplished using a capacitor as the frequency selective element. Also, the shunt feedback capacitor improves the noise performance of the amplifier. By applying the technique to a cascode LNA using 0.18‐µm CMOS technology, we obtain the NF of 0.7 dB, an IIP3 of +8.2 dBm, and a gain of 15.1 dB at 14.4 mW of power consumption at 900 MHz. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom