z-logo
Premium
An MTJ‐based non‐volatile flip‐flop for high‐performance SoC
Author(s) -
Jung Youngdon,
Kim Jisu,
Ryu Kyungho,
Kim Jung Pill,
Kang Seung H.,
Jung SeongOok
Publication year - 2014
Publication title -
international journal of circuit theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.364
H-Index - 52
eISSN - 1097-007X
pISSN - 0098-9886
DOI - 10.1002/cta.1859
Subject(s) - flip flop , current (fluid) , path (computing) , margin (machine learning) , tunnel magnetoresistance , computer science , transistor , degradation (telecommunications) , electrical engineering , channel (broadcasting) , cmos , topology (electrical circuits) , electronic engineering , voltage , materials science , engineering , telecommunications , layer (electronics) , machine learning , composite material , programming language
SUMMARY The conventional magnetic tunneling junction (MTJ)‐based non‐volatile D flip‐flop (NVDFF) has a slow D‐Q delay and a tradeoff between its D‐Q delay and its sensing current. In addition, a sufficient write current cannot be obtained with the core device, since two MTJs exist in the write path and a write current degradation problem occurs due to the precharge transistors. The proposed MTJ‐based non‐volatile semidynamic flip‐flop (NVSDFF) has a semidynamic structure that ensures a fast D‐Q delay and separates the sensing circuit from the D‐Q signal path to reduce the sensing current without affecting the D‐Q delay. The proposed NVSDFF also provides a sufficient write current by merely using the core device, since only one MTJ exists in the write path. In addition, the head switch, which is added to remove the write current degradation problem, further reduces the sensing current. Thus, the proposed NVSDFF has a higher read disturbance margin than the previous NVDFF with an IO device. The HSPICE simulation results with the industry‐compatible 45 nm model parameter show that the D‐Q delay in the proposed NVSDFF is 50.5% of that of the previous NVDFF with an IO device, and the sensing current, 32.3%. In the proposed NVSDFF, the read disturbance margin is 15.9% larger than in the previous NVDFF with an IO device, and the area is 17.8% smaller. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here