Premium
Low‐voltage low‐power CMOS receiver front‐end for gigabit short‐reach optical communications
Author(s) -
Gimeno C.,
Aldea C.,
Celma S.,
Aznar F.
Publication year - 2013
Publication title -
international journal of circuit theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.364
H-Index - 52
eISSN - 1097-007X
pISSN - 0098-9886
DOI - 10.1002/cta.1819
Subject(s) - transimpedance amplifier , gigabit , cmos , front and back ends , electrical engineering , electronic engineering , bandwidth (computing) , amplifier , computer science , engineering , telecommunications , operational amplifier , operating system
This article presents a new CMOS receiver analog front‐end for short‐reach high‐speed optical communications, which compensates the limited product bandwidth length of 1‐mm step‐index plastic optical fiber (SI‐POF) channels (45 MHz · 100 m) and the required large‐diameter high‐capacitance Si PIN photodetector (0.8 mm–3 pF). The proposed architecture, formed by a transimpedance amplifier and a continuous‐time equalizer, has been designed in a standard 0.18‐µm CMOS process with a single supply voltage of only 1 V, targeting gigabit transmission for simple no‐return‐to‐zero modulation consuming less than 23 mW. Experimental results validate the approach for cost‐effective gigabit SI‐POF transmission. Comparative analysis with previously reported POF receivers has been carried out by introducing a useful figure of merit. Copyright © 2012 John Wiley & Sons, Ltd.