z-logo
Premium
Natural Polymers as Green Binders for High‐Loading Supercapacitor Electrodes
Author(s) -
Ruschhaupt Peter,
Varzi Alberto,
Passerini Stefano
Publication year - 2020
Publication title -
chemsuschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.412
H-Index - 157
eISSN - 1864-564X
pISSN - 1864-5631
DOI - 10.1002/cssc.201902863
Subject(s) - supercapacitor , materials science , carboxymethyl cellulose , dielectric spectroscopy , cyclic voltammetry , chemical engineering , polymer , electrochemistry , electrode , composite material , chemistry , metallurgy , engineering , sodium
The state‐of‐the‐art aqueous binder for supercapacitors is carboxymethyl cellulose (CMC). However, it limits the mass loading of the coatings owing to shrinkage upon drying. In this work, natural polymers, that is, guar gum (GG), wheat starch (WS), and potato starch (PS), were studied as alternatives. The flexibility and adhesion of the resulting coatings and electrochemical performance was tested. The combination of 75:25 ( w / w ) ratio PS/GG showed a promising performance. Electrodes were characterized by SEM, thermal, adhesion, and bending tests. Their electrochemical properties were determined by cyclic voltammetry, electrochemical impedance spectroscopy, and cycling experiments. The PS/GG mixture conformed well to criteria for industrial production, enabling mass loadings higher than CMC (7.0 mg cm −2 ) while granting the same specific capacitance (26 F g −1 ) and power performance (20 F g −1 at 10 A g −1 ). Including the mass of the current collector, this represents a +45 % increase in specific energy at the electrode level.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here