z-logo
Premium
A Multiphase Protocol for Selective Hydrogenation and Reductive Amination of Levulinic Acid with Integrated Catalyst Recovery
Author(s) -
Bellè Alessandro,
Tabanelli Tommaso,
Fiorani Giulia,
Perosa Alvise,
Cavani Fabrizio,
Selva Maurizio
Publication year - 2019
Publication title -
chemsuschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.412
H-Index - 157
eISSN - 1864-564X
pISSN - 1864-5631
DOI - 10.1002/cssc.201900925
Subject(s) - levulinic acid , chemistry , reductive amination , catalysis , formic acid , selectivity , hydrocarbon , cyclohexylamine , amination , aqueous solution , inorganic chemistry , organic chemistry , methanation
At 60–150 °C and 15–35 bar H 2 , two model reactions of levulinic acid (LA), hydrogenation and reductive amination with cyclohexylamine, were explored in a multiphase system composed of an aqueous solution of reactants, a hydrocarbon, and commercial 5 % Ru/C as a heterogeneous catalyst. By tuning the relative volume of the immiscible water/hydrocarbon phases and the concentration of the aqueous solution, a quantitative conversion of LA was achieved with formation of γ‐valerolactone or N ‐(cyclohexylmethyl)pyrrolidone in >95 and 88 % selectivity, respectively. Additionally, the catalyst could be segregated in the hydrocarbon phase and recycled in an effective semi‐continuous protocol. Under such conditions, formic acid additive affected the reactivity of LA through a competitive adsorption on the catalyst surface. This effect was crucial to improve selectivity for the reductive amination process. The comparison of 5 % Ru/C with a series of carbon supports demonstrated that the segregation phenomenon in the hydrocarbon phase, never previously reported, was pH‐dependent and effective for samples displaying a moderate surface acidity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom