Premium
Dehydration of Alginic Acid Cryogel by TiCl 4 vapor: Direct Access to Mesoporous TiO 2 @C Nanocomposites and Their Performance in Lithium‐Ion Batteries
Author(s) -
Kim Sanghoon,
De Bruyn Mario,
Alauzun Johan G.,
Louvain Nicolas,
Brun Nicolas,
Macquarrie Duncan J.,
Stievano Lorenzo,
Mutin P. Hubert,
Monconduit Laure,
Boury Bruno
Publication year - 2019
Publication title -
chemsuschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.412
H-Index - 157
eISSN - 1864-564X
pISSN - 1864-5631
DOI - 10.1002/cssc.201900781
Subject(s) - mesoporous material , alginic acid , nanocomposite , materials science , chemical engineering , lithium (medication) , calcination , composite number , mesoporous organosilica , electrochemistry , inorganic chemistry , nanotechnology , electrode , catalysis , chemistry , organic chemistry , composite material , mesoporous silica , medicine , biochemistry , endocrinology , engineering
A new strategy for the synthesis of mesoporous TiO 2 @C nanocomposites through the direct mineralization of seaweed‐derived alginic acid cryogel by TiCl 4 through a solid/vapor reaction pathway is presented. In this synthesis, alginic acid cryogel can have multiple roles; i) mesoporous template, ii) carbon source, and iii) oxygen source for the TiO 2 precursor, TiCl 4 . The resulting TiO 2 @alginic acid composite was transformed either into pure mesoporous TiO 2 by calcination or into mesoporous TiO 2 @C nanocomposites by pyrolysis. By comparing with a nonporous TiO 2 @C composite, the importance of the mesopores on the performance of electrodes for lithium‐ion batteries based on mesoporous TiO 2 @C composite was clearly evidenced. In addition, the carbon matrix in the mesoporous TiO 2 @C nanocomposite also showed electrochemical activity versus lithium ions, providing twice the capacity of pure mesoporous TiO 2 or alginic acid‐derived mesoporous carbon (A600). Given the simplicity and environmental friendliness of the process, the mesoporous TiO 2 @C nanocomposite could satisfy the main prerequisites of green and sustainable chemistry while showing improved electrochemical performance as a negative electrode for lithium‐ion batteries.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom