z-logo
Premium
Effects of Electrolyte Anions on the Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper (100) and (111) Surfaces
Author(s) -
Huang Yun,
Ong Cheng Wai,
Yeo Boon Siang
Publication year - 2018
Publication title -
chemsuschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.412
H-Index - 157
eISSN - 1864-564X
pISSN - 1864-5631
DOI - 10.1002/cssc.201801078
Subject(s) - electrolyte , chemistry , inorganic chemistry , cyclic voltammetry , ethylene , copper , electrochemistry , adsorption , supporting electrolyte , electrode , catalysis , organic chemistry
The CO 2 electroreduction reaction has been investigated on Cu(100) and Cu(111) surfaces in 0.1  m aqueous solutions of KClO 4 , KCl, KBr, and KI electrolyte. The formation of ethylene and ethanol on these surfaces generally increased as the electrolyte anion was changed from ClO 4 − →Cl − →Br − →I − . For example, on Cu(100) at −1.23 V versus RHE, as the electrolyte anion changed from ClO 4 − to I − , the faradaic efficiency (FE) of ethylene formation increased from 31 to 50 %, FE ethanol increased from 7 to 16 %, and the associated current densities increased five‐ and sevenfold, respectively. A remarkable total FE of up to 74 % for C 2 and C 3 products was obtained in the presence of KI. Despite surface roughening in the presence of the electrolytes, the Cu(100) electrode still enhanced the formation of C 2 compounds better than Cu(111). The favorable reduction of CO 2 to C 2 products in KI electrolyte was correlated with a higher *CO population on the surface, as shown using linear sweep voltammetry. In situ Raman spectroscopy indicated that the coordination environment of *CO was altered by the used electrolyte anion. Thus, apart from affecting the morphology of the electrode and local pH value, we propose that the anion plays a critical role in enhancing the formation of C 2 products by tuning the coordination environment of adsorbed *CO, which gives rise to more efficient C−C coupling.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom