Premium
Carbon‐Nanodot Solar Cells from Renewable Precursors
Author(s) -
Marinovic Adam,
Kiat Lim S.,
Dunn Steve,
Titirici MariaMagdalena,
Briscoe Joe
Publication year - 2017
Publication title -
chemsuschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.412
H-Index - 157
eISSN - 1864-564X
pISSN - 1864-5631
DOI - 10.1002/cssc.201601741
Subject(s) - carbon fibers , nanodot , materials science , biomass (ecology) , nanotechnology , photovoltaics , chitin , solar cell , renewable energy , chemical engineering , energy conversion efficiency , chemistry , chitosan , photovoltaic system , organic chemistry , optoelectronics , ecology , oceanography , engineering , geology , composite number , electrical engineering , composite material , biology
It has recently been shown that waste biomass can be converted into a wide range of functional materials, including those with desirable optical and electronic properties, offering the opportunity to find new uses for these renewable resources. Photovoltaics is one area in which finding the combination of abundant, low‐cost and non‐toxic materials with the necessary functionality can be challenging. In this paper the performance of carbon nanodots derived from a wide range of biomaterials obtained from different biomass sources as sensitisers for TiO 2 ‐based nanostructured solar cells was compared; polysaccharides (chitosan and chitin), monosaccharide ( d ‐glucose), amino acids ( l ‐arginine and l ‐cysteine) and raw lobster shells were used to produce carbon nanodots through hydrothermal carbonisation. The highest solar power conversion efficiency (PCE) of 0.36 % was obtained by using l ‐arginine carbon nanodots as sensitisers, whereas lobster shells, as a model source of chitin from actual food waste, showed a PCE of 0.22 %. By comparing this wide range of materials, the performance of the solar cells was correlated with the materials characteristics by carefully investigating the structural and optical properties of each family of carbon nanodots, and it was shown that the combination of amine and carboxylic acid functionalisation is particularly beneficial for the solar‐cell performance.