Premium
Monitoring the Reaction Mechanism in Model Biogas Reforming by In Situ Transient and Steady‐State DRIFTS Measurements
Author(s) -
Bobadilla Luis F.,
Garcilaso Victoria,
Centeno Miguel A.,
Odriozola José A.
Publication year - 2017
Publication title -
chemsuschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.412
H-Index - 157
eISSN - 1864-564X
pISSN - 1864-5631
DOI - 10.1002/cssc.201601379
Subject(s) - formate , chemistry , catalysis , methane , dissociation (chemistry) , reaction mechanism , activation energy , adsorption , decomposition , bifunctional , steady state (chemistry) , photochemistry , reaction intermediate , inorganic chemistry , organic chemistry
In this work, the reforming of model biogas was investigated on a Rh/MgAl 2 O 4 catalyst. In situ transient and steady‐state diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements were used to gain insight into the reaction mechanism involved in the activation of CH 4 and CO 2 . It was found that the reaction proceeds through of an initial pathway in which methane and CO 2 are both dissociated on Rh metallic sites and additionally a bifunctional mechanism in which methane is activated on Rh sites and CO 2 is activated on the basic sites of the support surface via a formate intermediate by H‐assisted CO 2 decomposition. Moreover, this plausible mechanism is able to explain why the observed apparent activation energy of CO 2 is much lower than that of CH 4 . Our results suggest that CO 2 dissociation facilitates CH 4 activation, because the oxygen‐adsorbed species formed in the decomposition of CO 2 are capable of reacting with the CH x species derived from methane decomposition.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom