Premium
New Horizons for Perovskite Solar Cells Employing DNA‐CTMA as the Hole‐Transporting Material
Author(s) -
Yusoff Abd. Rashid bin Mohd,
Kim Jeongmo,
Jang Jin,
Nazeeruddin Mohammad Khaja
Publication year - 2016
Publication title -
chemsuschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.412
H-Index - 157
eISSN - 1864-564X
pISSN - 1864-5631
DOI - 10.1002/cssc.201600288
Subject(s) - perovskite (structure) , energy conversion efficiency , open circuit voltage , halide , deoxyribose , ammonium chloride , acceptor , materials science , electron acceptor , layer (electronics) , short circuit , current density , chemistry , chemical engineering , inorganic chemistry , optoelectronics , photochemistry , nucleic acid , voltage , nanotechnology , organic chemistry , engineering , biochemistry , physics , quantum mechanics , condensed matter physics
We investigate solution‐processed low‐temperature lead‐halide perovskite solar cells employing deoxyribose nucleic acid (DNA)–hexadecyl trimethyl ammonium chloride (CTMA) as the hole‐transport layer and (6,6)‐phenyl C 61 ‐butyric acid methyl ester (PCBM) as electron‐acceptor layer in an inverted p–i–n device configuration. The perovskite solar cells utilizing a bio‐based charge‐transport layer demonstrate power conversion efficiency values of 15.86 %, with short‐circuit current density of 20.85 mA cm −2 , open circuit voltage of 1.04 V, and fill factor of 73.15 %, and improved lifetime. DNA‐based devices maintained above 85 % of the initial efficiency after 50 days in air.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom