z-logo
Premium
New Horizons for Perovskite Solar Cells Employing DNA‐CTMA as the Hole‐Transporting Material
Author(s) -
Yusoff Abd. Rashid bin Mohd,
Kim Jeongmo,
Jang Jin,
Nazeeruddin Mohammad Khaja
Publication year - 2016
Publication title -
chemsuschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.412
H-Index - 157
eISSN - 1864-564X
pISSN - 1864-5631
DOI - 10.1002/cssc.201600288
Subject(s) - perovskite (structure) , energy conversion efficiency , open circuit voltage , halide , deoxyribose , ammonium chloride , acceptor , materials science , electron acceptor , layer (electronics) , short circuit , current density , chemistry , chemical engineering , inorganic chemistry , optoelectronics , photochemistry , nucleic acid , voltage , nanotechnology , organic chemistry , engineering , biochemistry , physics , quantum mechanics , condensed matter physics
We investigate solution‐processed low‐temperature lead‐halide perovskite solar cells employing deoxyribose nucleic acid (DNA)–hexadecyl trimethyl ammonium chloride (CTMA) as the hole‐transport layer and (6,6)‐phenyl C 61 ‐butyric acid methyl ester (PCBM) as electron‐acceptor layer in an inverted p–i–n device configuration. The perovskite solar cells utilizing a bio‐based charge‐transport layer demonstrate power conversion efficiency values of 15.86 %, with short‐circuit current density of 20.85 mA cm −2 , open circuit voltage of 1.04 V, and fill factor of 73.15 %, and improved lifetime. DNA‐based devices maintained above 85 % of the initial efficiency after 50 days in air.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here