z-logo
Premium
Solvent‐Driven Gate Opening in MOF‐76‐Ce: Effect on CO 2 Adsorption
Author(s) -
Ethiraj Jayashree,
Bonino Francesca,
Vitillo Jenny G.,
Lomachenko Kirill A.,
Lamberti Carlo,
Reinsch Helge,
Lillerud Karl Petter,
Bordiga Silvia
Publication year - 2016
Publication title -
chemsuschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.412
H-Index - 157
eISSN - 1864-564X
pISSN - 1864-5631
DOI - 10.1002/cssc.201501574
Subject(s) - cerium , adsorption , gravimetric analysis , absorption (acoustics) , rietveld refinement , thermal stability , metal organic framework , materials science , thermogravimetric analysis , fourier transform infrared spectroscopy , chemistry , inorganic chemistry , activated carbon , analytical chemistry (journal) , chemical engineering , crystal structure , crystallography , organic chemistry , engineering , composite material
A cerium‐based metal–organic framework with MOF‐76 topology has been synthesized by a very simple and fast solvothermal method that has been tested for a one gram yield. Variable‐temperature powder XRD and X‐ray absorption data, analyzed by Rietveld and multiple‐scattering extended X‐ray absorption fine‐structure methods, revealed high thermal stability and the presence of three different stable structures. X‐ray absorption near‐edge structure and FTIR spectroscopy probed the presence of cerium(III), which was characterized by coordinatively unsaturated sites that, however, played no major role in carbon dioxide adsorption. The material revealed excellent carbon dioxide adsorption properties: the highest gravimetric capacity of 15 wt % was observed at 1.1 bar in the case of the sample activated at 250 °C in vacuum, whereas the strongest interaction energy of 35 kJ mol −1 was observed for the sample activated at 150 °C. Negligible nitrogen uptake of the sample activated at 150 °C indicates that this material is a promising candidate for nitrogen/carbon dioxide separation purposes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here