Premium
Scalable Integration of Li 5 FeO 4 towards Robust, High‐Performance Lithium‐Ion Hybrid Capacitors
Author(s) -
Park MinSik,
Lim YoungGeun,
Hwang Soo Min,
Kim Jung Ho,
Kim JeomSoo,
Dou Shi Xue,
Cho Jaephil,
Kim YoungJun
Publication year - 2014
Publication title -
chemsuschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.412
H-Index - 157
eISSN - 1864-564X
pISSN - 1864-5631
DOI - 10.1002/cssc.201402397
Subject(s) - lithium (medication) , electrochemistry , capacitor , materials science , electrode , nanotechnology , chemistry , electrical engineering , voltage , medicine , engineering , endocrinology
Lithium‐ion hybrid capacitors have attracted great interest due to their high specific energy relative to conventional electrical double‐layer capacitors. Nevertheless, the safety issue still remains a drawback for lithium‐ion capacitors in practical operational environments because of the use of metallic lithium. Herein, single‐phase Li 5 FeO 4 with an antifluorite structure that acts as an alternative lithium source (instead of metallic lithium) is employed and its potential use for lithium‐ion capacitors is verified. Abundant Li + amounts can be extracted from Li 5 FeO 4 incorporated in the positive electrode and efficiently doped into the negative electrode during the first electrochemical charging. After the first Li + extraction, Li + does not return to the Li 5 FeO 4 host structure and is steadily involved in the electrochemical reactions of the negative electrode during subsequent cycling. Various electrochemical and structural analyses support its superior characteristics for use as a promising lithium source. This versatile approach can yield a sufficient Li + ‐doping efficiency of >90 % and improved safety as a result of the removal of metallic lithium from the cell.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom