z-logo
Premium
Photoreduction of Iron(III) to Iron(0) Nanoparticles for Simultaneous Hydrogen Evolution in Aqueous Solution
Author(s) -
Wang ChuanJun,
Cao Shuang,
Qin Biao,
Zhang Chen,
Li TingTing,
Fu WenFu
Publication year - 2014
Publication title -
chemsuschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.412
H-Index - 157
eISSN - 1864-564X
pISSN - 1864-5631
DOI - 10.1002/cssc.201400065
Subject(s) - triethanolamine , photocatalysis , hydrogen production , nanoparticle , aqueous solution , photochemistry , photosensitizer , catalysis , chemistry , hydrogen , graphene , visible spectrum , materials science , inorganic chemistry , nanotechnology , organic chemistry , analytical chemistry (journal) , optoelectronics
Crystalline Fe nanoparticles were obtained with fluorescein (Fl) as the photosensitizer in triethylamine (TEA) or triethanolamine (TEOA) aqueous solution with FeCl 3 as the Fe precursor under bright visible‐light light‐emitting diode (LED) irradiation. Photoinduced electron transfer from excited state Fl* and Fl − to Fe 3+ produced the Fe nanoparticles, which served as the active catalyst for in situ photocatalytic hydrogen production with Fl and TEA or TEOA as the photosensitizer and electron donors, respectively, in the same system. Robust hydrogen production activities were observed under the Fe nanoparticle photoreduction conditions in basic solution, and tens of milliliters of hydrogen were obtained over prolonged LED irradiation. If inorganic support materials such as NH 2 ‐MCM‐41 or reduced graphene oxide were introduced, dispersed nanoparticles with different sizes and shapes were deposited on the supports, which led to variously enhanced hydrogen production activities. The relationships between the morphologies of the Fe/H 2 N‐MCM‐41 or Fe/graphene composites generated in situ and the hydrogen production activities were investigated systematically.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here