z-logo
Premium
Shape‐ and Size‐Controlled Nanomaterials for Artificial Photosynthesis
Author(s) -
Fukuzumi Shunichi,
Yamada Yusuke
Publication year - 2013
Publication title -
chemsuschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.412
H-Index - 157
eISSN - 1864-564X
pISSN - 1864-5631
DOI - 10.1002/cssc.201300361
Subject(s) - artificial photosynthesis , catalysis , nanomaterials , photocatalysis , nanoparticle , oxygen evolution , water splitting , materials science , nanotechnology , photosynthesis , molecule , chemical engineering , mesoporous material , redox , hydrogen , chemistry , electrochemistry , organic chemistry , electrode , biochemistry , engineering , metallurgy
Nanomaterials with various shapes and sizes have been developed to mimic functions of photosynthesis in which solar energy conversion is achieved by using nanosized proteins with controlled shapes and sizes. Artificial photosynthesis consists of light‐harvesting and charge‐separation processes together with catalytic units of water oxidation and reduction. Nanosized mesoporous silica–alumina was utilized to encapsulate organic charge‐separation molecules inside the nanospace to elongate the lifetimes of the charge‐separated states, as observed in the photosynthetic reaction centers. Metal nanoparticles with controlled shapes and sizes have also been utilized as efficient catalysts for photocatalytic hydrogen evolution from water with reductants by using electron donor–acceptor organic molecules as photocatalysts. The control of the shape and size of metal nanoparticles plays a very important role in achieving high catalytic performance in catalytic hydrogen evolution in water reduction and also in catalytic oxygen evolution in water oxidation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here