
Optimization of cone beam computed tomography image quality in implant dentistry
Author(s) -
Alawaji Yasmine,
MacDonald David S.,
Giannelis Georgios,
Ford Nancy L.
Publication year - 2018
Publication title -
clinical and experimental dental research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.464
H-Index - 9
ISSN - 2057-4347
DOI - 10.1002/cre2.141
Subject(s) - imaging phantom , image quality , cone beam computed tomography , nuclear medicine , image noise , dosimetry , artifact (error) , medicine , biomedical engineering , artificial intelligence , computed tomography , radiology , computer science , image (mathematics)
This study was conducted to optimize the cone beam computed tomography image quality in implant dentistry using both clinical and quantitative image quality evaluation with measurement of the radiation dose. A natural bone human skull phantom and an image quality phantom were used to evaluate the images produced after changing the exposure parameters (kVp and mA). A 10 × 5 cm 2 field of view was selected for average adult. Five scans were taken with varying kVp (70–90 kVp) first at fixed 4 mA. After assessment of the scans and selecting the best kVp, nine scans were taken with 2–12 mA, and the kVp was fixed at the optimal value. A clinical assessment of the implant‐related anatomical landmarks was done in random order by two blinded examiners. Quantitative image quality was assessed for noise/uniformity, artifact added value, contrast‐to‐noise ratio, spatial resolution, and geometrical distortion. A dosimetry index phantom and thimble ion chamber were used to measure the absorbed dose for each scan setting. The anatomical landmarks of the maxilla had good image quality at all kVp settings. To produce good quality images, the mandibular landmarks demanded higher exposure parameters than the maxillary landmarks. The quantitative image quality values were acceptable at all selected exposure settings. Changing the exposure parameters does not necessarily produce higher image quality outcomes but does affect the radiation dose to the patient. The image quality could be optimized for implant treatment planning at lower exposure settings and dose than the default settings.