Premium
Microstructure and spacings of directionally solidified metal‐semiconductor eutectic alloys
Author(s) -
Vetter J.,
Frühauf J.,
Schmidt G.
Publication year - 1985
Publication title -
crystal research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.377
H-Index - 64
eISSN - 1521-4079
pISSN - 0232-1300
DOI - 10.1002/crat.2170201218
Subject(s) - eutectic system , materials science , microstructure , semiconductor , volume fraction , germanium , growth rate , metal , diffusion , phase (matter) , eutectic bonding , metallurgy , temperature gradient , crystallography , analytical chemistry (journal) , composite material , silicon , thermodynamics , chemistry , optoelectronics , geometry , mathematics , physics , organic chemistry , quantum mechanics , chromatography
Directionally solidified metal‐semiconductor eutectic alloys, representing nonfacetted facetted eutectics, show a variety of microstructures caused by the great differences in semiconductor volume fraction (ZnGe 7,8 %; GeZrGe 2 98.6 %), the influence of growth rate and temperature gradient at the solid‐liquid interface. The AlSi, AgSi, AgGe, ZnGe, Cu 3 SiSi, NiGeGe, CoGe 2 Ge, Mn 3 Ge 2 Ge, FeGe 2 Ge, Mn 11 Si 19 Si, Cu 3 GeGe, GeTiGe 2 and GeZrGe 2 eutectics habe been investigated. The following three models are applicable for the calculation of the spacings as a function of growth rate and temperature gradient at the solid‐liquid interface to certain microstructures: diffusion‐determined growth, branchinglimited growth and phase‐lead‐determined growth.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom