Premium
Understanding the effect of solvent polarity on the habit modification of monoclinic paracetamol in terms of molecular recognition at the solvent crystal/interface
Author(s) -
Sudha C.,
Srinivasan K.
Publication year - 2014
Publication title -
crystal research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.377
H-Index - 64
eISSN - 1521-4079
pISSN - 0232-1300
DOI - 10.1002/crat.201400200
Subject(s) - monoclinic crystal system , solvent , crystal habit , chemistry , solubility , acetonitrile , supersaturation , solvent effects , crystal (programming language) , nucleation , acetone , crystallography , molecule , crystallization , organic chemistry , computer science , programming language
The habit change of monoclinic paracetamol crystallized from solutions with different solvents such as water, ethanol, methanol, acetone, isopropyl alcohol, tetrahydrofuran, cyclohexanone, acetonitrile and 1, 4 ‐ dioxane was investigated. Change in solubility, pH and nucleation time of paracetamol in these solvents at ambient condition was studied. The polymorphic form of the nucleated paracetamol was observed under in‐situ optical microscopy. Solutions with different solvents having different chemical nature and polarity yielded paracetamol crystals with different habits: columnar morphology from polar protic water and prismatic morphology from other selected polar protic, aprotic and in non‐polar solvents. The significant differences on the growth rate of various crystal habit faces of the monoclinic paracetamol grown from different solvents are attributed in context with the solubility of the solute, solvent polarity, evaporation number of the solvent, rate of generation of supersaturation and the role of hydrogen bonding interaction between the solvent molecules and protruding solute molecules on the crystal surface. Among the solution with different solvents, bulk monoclinic paracetamol single crystal was grown from ethanolic solution using seed rotation technique by controlled cooling method.