Premium
Mixed metal oxide nanocomposites derived from layered double hydroxides as photocatalysts for C.I. Basic Blue 3 degradation under UV light
Author(s) -
Rezvani Z.,
Sarkarat M.,
Khataee A. R.,
Nejati K.
Publication year - 2012
Publication title -
crystal research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.377
H-Index - 64
eISSN - 1521-4079
pISSN - 0232-1300
DOI - 10.1002/crat.201200263
Subject(s) - nanocomposite , calcination , crystallinity , materials science , photocatalysis , oxide , layered double hydroxides , chemical engineering , aqueous solution , nuclear chemistry , transmission electron microscopy , nanotechnology , chemistry , composite material , catalysis , metallurgy , organic chemistry , hydroxide , engineering
In this research we report synthesis of the heterostructure Mg‐Al‐Zn mixed metal oxide (ZnO/MMO) nanocomposite photocatalysts derived from Zn(OH) 2 /Mg‐Al‐layered double hydroxides (ZLDHs) precursors. The obtained samples were characterized by the X‐ray diffraction (XRD), FT‐IR, BET surface area, ICP and TG/DTG methods. The chemical compositions and morphology of the synthesized materials were investigated by the energy dispersive X‐ray analysis (EDX) and the transmission electron microscopy (TEM). The results reveal that at the reaction time 96 h, ZLDH has the highest crystalinity which was confirmed by the X‐ray diffraction spectra. The calcined samples at 500, 600 and 700 °C for 4 h show that the crystallinity of the nanocomposite improves with the increase of calcination temperature. The photocatalytic activities of synthesized nanocomposites were compared for the degradation of C. I. Basic Blue 3 (BB3) dye under UV illumination in aqueous solution. Among the synthesized nanocomposites, ZnO/MMO calcined at 700 °C shows the highest efficiency towards the removal of dye. The effect of UV illumination on the stability of ZnO in ZnO/MMO nanocomposite and pure ZnO was also investigated. The results showed that the photostability of ZnO in ZnO/MMO nanocomposite is increased compared to the pure ZnO.