Premium
Effect of annealing on the properties of chemical bath deposited nanorods of CdSe thin films
Author(s) -
Bakiyaraj G.,
Dhanasekaran R.
Publication year - 2012
Publication title -
crystal research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.377
H-Index - 64
eISSN - 1521-4079
pISSN - 0232-1300
DOI - 10.1002/crat.201200196
Subject(s) - chemical bath deposition , cadmium selenide , materials science , crystallite , annealing (glass) , band gap , nanorod , thin film , scanning electron microscope , hall effect , hexagonal phase , electrical resistivity and conductivity , analytical chemistry (journal) , crystallography , nanotechnology , quantum dot , chemistry , optoelectronics , hexagonal crystal system , composite material , metallurgy , engineering , chromatography , electrical engineering
Cadmium selenide (CdSe) thin films have been deposited by chemical bath deposition (CBD) on a glass substrate and they are annealed at 450 °C for 1 h. Scanning electron microscopic (SEM) image of as‐deposited CdSe shows the spherical shaped grains distributed over entire glass substrate. When it is annealed at 450 °C, clusters of nano‐rods with star shaped grains are formed. The X‐ray diffraction (XRD) study of the as‐deposited films exhibits a polycrystalline nature and it undergoes a structural phase transition from the metastable cubic to the stable hexagonal phase when annealed at 450 °C. Optical band gap of as‐deposited films (2.0 eV) has a blue shift with respect to the bulk value (1.7 eV) due to quantum confinement. The band gap energies of the films are decreased from 2.0 eV to 1.9 eV due to annealing at the temperature of 450 °C. The electrical resistivity, Hall mobility and carrier concentration of as‐deposited and annealed films are determined.