Premium
The influence of crystallization conditions on the onset of dendritic growth of calcium carbonate
Author(s) -
Beck R.,
Andreassen J.P.
Publication year - 2012
Publication title -
crystal research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.377
H-Index - 64
eISSN - 1521-4079
pISSN - 0232-1300
DOI - 10.1002/crat.201100599
Subject(s) - supersaturation , vaterite , calcium carbonate , crystallization , biomineralization , chemical engineering , crystal (programming language) , carbonate , crystal growth , calcite , calcium , chemistry , aqueous solution , crystallography , mineralogy , aragonite , organic chemistry , computer science , engineering , programming language
Understanding the crystallization of calcium carbonate is relevant in numerous fields like biomineralization, geology and industrial applications where calcium carbonate forms. In order to enhance the knowledge about the formation of calcium carbonate with focus on the vaterite polymorph, in this work calcium carbonate has been crystallized in aqueous solutions at temperatures from 5 °C to 90 °C. Special attention has been directed to higher temperatures for which the effect of the initial supersaturation on the resulting crystal morphologies and the onset of dendritic growth have been studied. In analogy to snow crystal formation, it has been found that in a certain temperature range hexagonal plate‐like crystals form at low supersaturation whereas dendritic patterns start to appear at higher supersaturation. The symmetrical branches characteristic for dendritic growth get less pronounced as the temperature is decreased. The results reported here related to the interdependence between supersaturation, crystal morphology and growth mechanisms, can be used in future works to predict particle formation and to design crystal architectures. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)