Premium
Parity violation and parity conservation in unstirred crystallization: Effect of first crystals
Author(s) -
Szurgot M.
Publication year - 2012
Publication title -
crystal research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.377
H-Index - 64
eISSN - 1521-4079
pISSN - 0232-1300
DOI - 10.1002/crat.201100458
Subject(s) - nucleation , crystallization , enantiomer , chemistry , thermodynamics , crystallography , physics , stereochemistry , organic chemistry
Abstract Statistics of nucleation of chiral forms was studied to establish the effect of the number of first crystals and their handedness on distributions of enantiomers. Various bimodal, trimodal and unimodal distributions are obtained in unstirred crystallization, depending on the number of initial crystals and growth conditions. The binomial distribution satisfactorily describes experimental distributions of enantiomeric excess and may be used to predict distributions and probabilities of nucleation of enantiomers. The first nucleated crystals determine the handedness of secondary crystals, and number of initial crystals governs statistics of chiral nucleation. According to the binomial distribution if single crystals nucleate as the first, the bimodal distributions result with D and L peaks. If LD, LL, and DD pairs are nucleated as first, trimodal distributions with D, R, and L peaks are created, and if groups of crystals of various handedness nucleate as the first the unimodal distributions of enantiomeric excess with racemate R peaks are formed. Chiral nucleation experiments on sodium bromate were the basis for the theoretical considerations and verifications of predictions resulting from binomial distributions on probabilities of the creation of L and D crystals, and racemates, and the presence of D, L, and R peaks in the distributions. Growth conditions affect the number of the first crystals and effectiveness of cloning, and as a result, the distributions of enantiomers. Formation of pure enantiomers and/or racemates proves that the conservation of chiral symmetry, and the breakage of chiral symmetry can occur in unstirred crystallization. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)