z-logo
Premium
The Czochralski Method ‐ where we are 90 years after Jan Czochralski’s invention
Author(s) -
Müller G.
Publication year - 2007
Publication title -
crystal research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.377
H-Index - 64
eISSN - 1521-4079
pISSN - 0232-1300
DOI - 10.1002/crat.200711001
Subject(s) - czochralski method , crystal (programming language) , yield (engineering) , materials science , order (exchange) , crystal growth , semiconductor , crystallography , optoelectronics , engineering physics , chemistry , computer science , silicon , engineering , metallurgy , finance , economics , programming language
The Czochralski method, i.e. pulling a crystal from the melt, became the most important technology for the production of large semiconductor (Si, GaAs, InP, GaP …) and optical crystals (oxides, CaF 2 …). The present status is achieved by a profound analysis of the mechanisms of heat and species transport which are relevant for the stability of the Czochralski growth process and the performance of the growing crystal. It was clearly demonstrated in the last few years that modeling by numerical simulation is an indispensable tool to analyze the Czochralski process and to understand the governing mechanisms. The contribution presents examples of this kind of modeling the Czochralski technique in correlation with experimental investigations in order to illustrate the present status of understanding relevant processing phenomena. Furthermore, it is shown what problems need still to be solved in the future in order to further improve the yield and quality of Czochralski‐grown crystals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here