Premium
Photorefractive features of non‐stoichiometry codoped Hf:Fe:LiNbO 3 single crystals
Author(s) -
Bo Liu,
Chunliang Li,
Jiancong Bi,
Liang Sun,
Yuheng Xu
Publication year - 2008
Publication title -
crystal research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.377
H-Index - 64
eISSN - 1521-4079
pISSN - 0232-1300
DOI - 10.1002/crat.200710965
Subject(s) - photorefractive effect , stoichiometry , doping , analytical chemistry (journal) , attenuation coefficient , absorption (acoustics) , materials science , charge carrier , lithium niobate , chemistry , optics , optoelectronics , physics , chromatography , composite material
Hf(2mol%):Fe(0.05wt%):LiNbO 3 crystals with various [Li]/[Nb] ratios of 0.94, 1.05, 1.2 and 1.38 have been grown. The photorefractive resistant ability increases with the accretion of [Li]/[Nb] ratio. When the ratio of [Li]/[Nb] is 1.20 or 1.38, the OH ‐ absorption band shifts to about 3477cm ‐1 . The mechanisms of the photorefractive resistant ability increase and the absorption band shift have been discussed. The exponential gain coefficient (Γ) of the crystals was measured with two‐beam coupling method and the effective charge carrier concentration (N eff ) was calculated. The results show that Γ and N eff increase with the accretion of [Li]/[Nb] ratio. The temperature effect of codoped Hf:Fe:LiNbO 3 crystals was also studied, it was found that the exponential gain coefficient increase dramatically at about 55°C, 70°C and 110°C, this is due to the inner electric field which is resulted from structure phase change. (© 2007 WILEY ‐VCH Verlag GmbH & Co. KGaA, Weinheim)