Premium
Protein crystal nucleation: Recent notions
Author(s) -
Nanev Christo N.
Publication year - 2007
Publication title -
crystal research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.377
H-Index - 64
eISSN - 1521-4079
pISSN - 0232-1300
DOI - 10.1002/crat.200610761
Subject(s) - nucleation , protein crystallization , crystallization , chemical physics , molecule , crystal (programming language) , crystallography , cluster (spacecraft) , anisotropy , homogeneous , chemistry , materials science , physics , thermodynamics , optics , organic chemistry , computer science , programming language
The nucleation of protein crystals is reconsidered taking into account the specificity of the protein molecules. In contrast to the homogeneous surface properties of small molecules, the protein molecule surface is highly inhomogeneous. Over their surfaces proteins exhibit high anisotropic distribution of patches, which are able to form crystalline bonds, the crystallization patch representing only a small fraction of the total surface of the protein molecule. Therefore, an appropriate spatial orientation of the colliding protein molecules is required in order to create a crystalline cluster. This scenario decreases considerably the success ratio of the attempt frequency for crystal nucleation. On the other hand a heterogeneous nucleation of (protein) crystals may be accelerated due to the arrival on some support of under‐critical clusters that are formed in bulk solution; when arriving there they may acquire the property of critical nuclei. Thus, a plausible explanation of important peculiarities of protein crystal nucleation, as inferred from the experimental data, is suggested. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)