z-logo
Premium
Sedimentation as a tool for crystallization from protein mixtures
Author(s) -
Dimitrov I.,
Nanev C. N.
Publication year - 2006
Publication title -
crystal research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.377
H-Index - 64
eISSN - 1521-4079
pISSN - 0232-1300
DOI - 10.1002/crat.200610722
Subject(s) - lysozyme , crystallization , sedimentation , chemistry , protein crystallization , ferritin , molecule , sedimentation equilibrium , chromatography , crystallography , chemical engineering , biochemistry , organic chemistry , ultracentrifuge , geology , sediment , paleontology , engineering
Crystals from apoferritin which is an iron‐free form of protein ferritin were obtained from protein mixtures lysozyme/apoferritin using sedimentation under high gravity. Solution containing apoferritin at concentration as high as 5mg/ml in the presence of 25mg/ml lysozyme and overlaid on 5%(w/v) CdSO 4 in 0,2M/L NaAC, pH=5 still favors apoferritin crystal formation under normal gravity conditions, but at apoferritin concentrations <0,5mg/ml (∼1,14µM/L) in 25mg/ml (∼1,71mM/L) lysozyme only the sedimentation in a centrifuge appears to be useful for separating the apoferritin molecules from the mixture followed by apoferritin crystallization in the same system. The very high molecule number ratio (∼1:10 3 ) of two proteins is used to stress on the observed effect. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom