z-logo
Premium
Crystallization kinetics of MgSO 4 ·12H 2 O from different scales of batch cooling scraped crystallizers
Author(s) -
Himawan C.,
Witkamp G. J.
Publication year - 2006
Publication title -
crystal research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.377
H-Index - 64
eISSN - 1521-4079
pISSN - 0232-1300
DOI - 10.1002/crat.200510685
Subject(s) - crystallization , nucleation , kinetic energy , kinetics , scaling , chemistry , thermodynamics , population , crystal growth , crystal (programming language) , crystallography , physics , geometry , mathematics , demography , quantum mechanics , sociology , computer science , programming language
For reliably scaling up of crystallizers, a full kinetic model is required in addition to heat, mass and population balances. A method for extracting nucleation and growth kinetic parameters for scaling‐up seeded batch cooling crystallization was developed and demonstrated with a 15 L and in a 115 L scraped crystallizer using MgSO 4 ·12H 2 O as the model system. The method includes fitting the time resolved measured solute concentration and the crystal size distributions with a dynamic population‐based model. The kinetic parameters extracted from the bench‐scale crystallizer agree with those obtained from the pilot scale, confirming that they can be employed for design purposes. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom