Premium
Tacrolimus Exposure Prediction Using Machine Learning
Author(s) -
Woillard JeanBaptiste,
Labriffe Marc,
Debord Jean,
Marquet Pierre
Publication year - 2021
Publication title -
clinical pharmacology and therapeutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.941
H-Index - 188
eISSN - 1532-6535
pISSN - 0009-9236
DOI - 10.1002/cpt.2123
Subject(s) - mean squared error , maximum a posteriori estimation , dosing , statistics , mathematics , test set , bayesian probability , receiver operating characteristic , bayes' theorem , medicine , artificial intelligence , computer science , maximum likelihood
The aim of this work is to estimate the area‐under the blood concentration curve of tacrolimus (TAC) following b.i.d. or q.d. dosing in organ transplant patients, using Xgboost machine learning (ML) models. A total of 4,997 and 1,452 TAC interdose area under the curves (AUCs) from patients on b.i.d. and q.d. TAC, sent to our Immunosuppressant Bayesian Dose Adjustment expert system ( www.pharmaco.chu‐limoges.fr/ ) for AUC estimation and dose recommendation based on TAC concentrations measured at least at 3 sampling times (predose, ~ 1 and 3 hours after dosing) were used to develop 4 ML models based on 2 or 3 concentrations. For each model, data splitting was performed to obtain a training set (75%) and a test set (25%). The Xgboost models in the training set with the lowest root mean square error (RMSE) in a 10‐fold cross‐validation experiment were evaluated in the test set and in 6 independent full‐pharmacokinetic (PK) datasets from renal, liver, and heart transplant patients. ML models based on two or three concentrations, differences between these concentrations, relative deviations from theoretical times of sampling, and four covariates (dose, type of transplantation, age, and time between transplantation and sampling) yielded excellent AUC estimation performance in the test datasets (relative bias < 5% and relative RMSE < 10%) and better performance than maximum a posteriori Bayesian estimation in the six independent full‐PK datasets. The Xgboost ML models described allow accurate estimation of TAC interdose AUC and can be used for routine TAC exposure estimation and dose adjustment. They will soon be implemented in a dedicated web interface.