Premium
From Real‐World Patient Data to Individualized Treatment Effects Using Machine Learning: Current and Future Methods to Address Underlying Challenges
Author(s) -
Bica Ioana,
Alaa Ahmed M.,
Lambert Craig,
Schaar Mihaela
Publication year - 2021
Publication title -
clinical pharmacology and therapeutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.941
H-Index - 188
eISSN - 1532-6535
pISSN - 0009-9236
DOI - 10.1002/cpt.1907
Subject(s) - machine learning , causal inference , observational study , computer science , artificial intelligence , inference , population , randomized controlled trial , clinical trial , gold standard (test) , precision medicine , data science , medicine , surgery , environmental health , pathology
Clinical decision making needs to be supported by evidence that treatments are beneficial to individual patients. Although randomized control trials (RCTs) are the gold standard for testing and introducing new drugs, due to the focus on specific questions with respect to establishing efficacy and safety vs. standard treatment, they do not provide a full characterization of the heterogeneity in the final intended treatment population. Conversely, real‐world observational data, such as electronic health records (EHRs), contain large amounts of clinical information about heterogeneous patients and their response to treatments. In this paper, we introduce the main opportunities and challenges in using observational data for training machine learning methods to estimate individualized treatment effects and make treatment recommendations. We describe the modeling choices of the state‐of‐the‐art machine learning methods for causal inference, developed for estimating treatment effects both in the cross‐section and longitudinal settings. Additionally, we highlight future research directions that could lead to achieving the full potential of leveraging EHRs and machine learning for making individualized treatment recommendations. We also discuss how experimental data from RCTs and Pharmacometric and Quantitative Systems Pharmacology approaches can be used to not only improve machine learning methods, but also provide ways for validating them. These future research directions will require us to collaborate across the scientific disciplines to incorporate models based on RCTs and known disease processes, physiology, and pharmacology into these machine learning models based on EHRs to fully optimize the opportunity these data present.