Human Intestinal Enteroids for the Study of Bacterial Adherence, Invasion, and Translocation
Author(s) -
Poole Nina M.,
Rajan Anubama,
Maresso Anthony W.
Publication year - 2018
Publication title -
current protocols in microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.813
H-Index - 35
eISSN - 1934-8533
pISSN - 1934-8525
DOI - 10.1002/cpmc.55
Subject(s) - biology , intestinal epithelium , epithelium , chromosomal translocation , intestinal mucosa , crypt , bacterial translocation , immunology , cell culture , microbiology and biotechnology , medicine , genetics , gene , endocrinology
Adherence, invasion, and translocation to and through the intestinal epithelium are important drivers of disease for many enteric bacteria. However, most work has been limited to transformed intestinal cell lines or murine models that often do not faithfully recapitulate key elements associated with human disease. The recent technological advances in organotypic tissue and cell culture are providing unparalleled access to systems with human physiology and complexity. Human intestinal enteroids (HIEs), derived from patient biopsy or surgical specimens of intestinal tissues, are organotypic cultures now being adapted to the study of enteric infections. HIEs are comprised of the dominant cell types of the human gastrointestinal epithelium, can be grown in two‐ or three‐dimensional structures, form a crypt–villus axis with defined apical and basolateral compartments, and undergo physiologic responses to many different stimuli. Here, we describe a series of protocols that encompass the use of human enteroids for the measurement of the adherence, invasion, and translocation of E. coli to and through the intestinal epithelium. We also outline the steps needed to grow and prepare enteroids for this purpose and highlight some common problems to troubleshoot. © 2018 by John Wiley & Sons, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom