z-logo
open-access-imgOpen Access
Rapid Tagging of Human Proteins with Fluorescent Reporters by Genome Engineering using Double‐Stranded DNA Donors
Author(s) -
Paix Alexandre,
Rasoloson Dominique,
Folkmann Andrew,
Seydoux Geraldine
Publication year - 2019
Publication title -
current protocols in molecular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.533
H-Index - 42
eISSN - 1934-3647
pISSN - 1934-3639
DOI - 10.1002/cpmb.102
Subject(s) - dna , genome , fluorescence , human genome , microbiology and biotechnology , biology , computational biology , genetics , chemistry , gene , physics , quantum mechanics
Tagging proteins with fluorescent reporters such as green fluorescent protein (GFP) is a powerful method to determine protein localization, especially when proteins are tagged in the endogenous context to preserve native genomic regulation. However, insertion of fluorescent reporters into the genomes of mammalian cells has required the construction of plasmids containing selection markers and/or extended sequences homologous to the site of insertion (homology arms). Here we describe a streamlined protocol that eliminates all cloning steps by taking advantage of the high propensity of linear DNAs to engage in homology‐directed repair of DNA breaks induced by the Cas9 RNA‐guided endonuclease. The protocol uses PCR amplicons, or synthetic gene fragments, with short homology arms (30‐40 bp) to insert fluorescent reporters at specific genomic locations. The linear DNAs are introduced into cells with preassembled Cas9‐crRNA‐tracrRNA complexes using one of two transfection procedures, nucleofection or lipofection. The protocol can be completed under a week, with efficiencies ranging from 0.5% to 20% of transfected cells depending on the locus targeted. © 2019 The Authors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here