z-logo
Premium
Hydrogen‐Bond Dynamics and Energetics of Biological Water
Author(s) -
Adhikari Aniruddha,
Park WonWoo,
Kwon OhHoon
Publication year - 2020
Publication title -
chempluschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.801
H-Index - 61
ISSN - 2192-6506
DOI - 10.1002/cplu.202000744
Subject(s) - energetics , biomolecule , chemistry , hydrogen bond , chemical physics , breakage , molecular dynamics , molecule , nanotechnology , computational chemistry , thermodynamics , organic chemistry , physics , biochemistry , materials science , composite material
Water molecules in the immediate vicinity of biomacromolecules and biomimetic organized assemblies often exhibit a markedly distinct behavior from that of their bulk counterparts. The overall sluggish behavior of biological water substantially affects the stability and integrity of biomolecules, as well as the successful execution of various crucial water‐mediated biochemical phenomena. In this Minireview, insights are provided into the features of truncated hydrogen‐bond networks that grant biological water its unique characteristics. In particular, experimental results and theoretical investigations, based on chemical kinetics, are presented that have shed light on the dynamics and energetics governing such characteristics. It is emphasized how such details help us to understand the energetics of biological water, an aspect relatively less explored than its dynamics. For instance, when biological water at hydrophilic or charged protein surfaces was explored, the free energy of H‐bond breakage was found to be of the order of 0.4 kcal mol −1 higher than that of bulk water.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here