z-logo
Premium
Transfer of Chiral Information from Silica Hosts to Achiral Luminescent Guests: a Simple Approach to Accessing Circularly Polarized Luminescent Systems
Author(s) -
Tsunega Seiji,
Jin RenHua,
Nakashima Takuya,
Kawai Tsuyoshi
Publication year - 2020
Publication title -
chempluschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.801
H-Index - 61
ISSN - 2192-6506
DOI - 10.1002/cplu.201900615
Subject(s) - luminescence , circular dichroism , covalent bond , chemistry , materials science , combinatorial chemistry , photochemistry , organic chemistry , stereochemistry , optoelectronics
Abstract Systems that show circularly polarized luminescence (CPL) are usually constructed in one of two possible ways: either covalently binding the chiral moieties (usually organic compounds) to luminophores (inorganic or organic compounds) or associating the luminophores as guests with chiral hosts (usually organic compounds). Herein, we propose inorganic‐based CPL‐active systems constructed by the “chiral host‐luminescent guest” strategy, in which silica acts as a chiral host to endow various luminescent guests with CPL. The chiral silica was modified by silane coupling with amino or phenyl groups to allow interaction with luminescent guests, and then used in combination with acidic achiral dyes, lead‐halide type perovskites, and aggregation‐induced emission luminogens (AIEgens). Interestingly, when these achiral guests were noncovalently confined in surface‐modified chiral silica, the guests showed chiroptical behavior in the circular dichroism (CD) spectra, and thus became CPL active, even though they are not inherently chiral. The surface functional groups on the silica play very important roles in transferring the chiral information from the silica to the guests. This work provides a new concept for constructing CPL‐active systems using inorganic materials as a chiral source.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here