Premium
Synthesis, Optical, Electrochemical, and Theoretical Studies of Dipolar Ruthenium Alkynyl Complexes with Oligo(phenylenevinylene) Bridges
Author(s) -
Zhang Huihua,
Morshedi Mahbod,
Kodikara Mahesh S.,
Moxey Graeme J.,
Wang Genmiao,
Wang Huan,
Quintana Cristóbal,
Stranger Rob,
Zhang Chi,
Cifuentes Marie P.,
Humphrey Mark G.
Publication year - 2016
Publication title -
chempluschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.801
H-Index - 61
ISSN - 2192-6506
DOI - 10.1002/cplu.201600203
Subject(s) - ruthenium , cyclic voltammetry , electrochemistry , chemistry , acceptor , stereochemistry , medicinal chemistry , crystallography , catalysis , organic chemistry , physics , electrode , condensed matter physics
The syntheses of oligo( p ‐phenylenevinylene)s (OPVs) end‐functionalized with a ligated ruthenium alkynyl unit as a donor and a nitro as acceptor, namely trans ‐[Ru{C≡C‐1‐C 6 H 4 ‐4‐( E )‐CH=CH‐1‐C 6 H 2 ‐2,5‐Et 2 ‐4‐( E )‐CH=CH‐1‐C 6 H 2 ‐2,5‐Et 2 ‐4‐( E )‐CH=CH‐1‐C 6 H 4 ‐4‐NO 2 }Cl(dppe) 2 ] ( Ru4 ), trans ‐[Ru{C≡C‐1‐C 6 H 4 ‐4‐( E )‐CH=CH‐1‐C 6 H 2 ‐2,5‐Et 2 ‐4‐( E )‐CH=CH‐1‐C 6 H 2 ‐2,5‐Et 2 ‐4‐( E )‐CH=CH‐1‐C 6 H 2 ‐2,5‐( n ‐hexyl) 2 ‐4‐( E )‐CH=CH‐1‐C 6 H 2 ‐2,5‐( n ‐hexyl) 2 ‐4‐( E )‐CH=CH‐1‐C 6 H 4 ‐4‐NO 2 }Cl(dppe) 2 ] ( Ru6 ), and trans ‐[Ru{C≡C‐1‐C 6 H 4 ‐4‐( E )‐CH=CH‐1‐C 6 H 2 ‐2,5‐Et 2 ‐4‐( E )‐CH=CH‐1‐C 6 H 2 ‐2,5‐Et 2 ‐4‐( E )‐CH=CH‐1‐C 6 H 2 ‐2,5‐( n ‐hexyl) 2 ‐4‐( E )‐CH=CH‐1‐C 6 H 2 ‐2,5‐( n ‐hexyl) 2 ‐4‐( E )‐CH=CH‐1‐C 6 H 2 ‐2,5‐(2‐ethyl‐ n ‐hexyl) 2 ‐4‐( E )‐CH=CH‐1‐C 6 H 2 ‐2,5‐(2‐ethyl‐ n ‐hexyl) 2 ‐4‐( E )‐CH=CH‐1‐C 6 H 4 ‐4‐NO 2 }Cl(dppe) 2 ] ( Ru8 ), are reported, together with those of precursor alkynes. Their electrochemical properties were assessed by cyclic voltammetry (CV), their linear optical and quadratic nonlinear optical (NLO) properties assayed by UV/Vis‐NIR spectroscopy and hyper‐Rayleigh scattering studies at 1064 nm, respectively, and their linear optical properties in the formally Ru III state examined by UV/Vis‐NIR spectroelectrochemistry. Computational studies employing time‐dependent density functional theory were undertaken on model complexes to rationalize the optical observations.