Premium
Bioorthogonal Chemical Handle for Tracking Multifunctional Nanoparticles
Author(s) -
Goonewardena Sascha N.,
Zong Hong,
Leroueil Pascale R.,
Baker James R.
Publication year - 2013
Publication title -
chempluschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.801
H-Index - 61
ISSN - 2192-6506
DOI - 10.1002/cplu.201300007
Subject(s) - bioorthogonal chemistry , nanoparticle , nanotechnology , dendrimer , click chemistry , computer science , combinatorial chemistry , chemistry , materials science , organic chemistry
Nanoparticle technologies have tremendous potential in clinical medicine. To fully realize this potential, one must further understand how nanoparticles interact with biological systems. Typically, reporters that are conjugated to nanoparticles during synthesis are used to monitor the nanoparticles in biological systems. Unfortunately, conjugating reporters to nanoparticles complicates the synthesis and the reporter itself may alter the nanoparticle properties. To address these challenges, a copper‐catalyzed azide–alkyne cycloaddition strategy has been developed to functionalize nanoparticles with fluorescent reporters after they have been delivered to biological systems. Using polyamidoamine dendrimers as model nanoparticles, the utility of this strategy is shown in several biological systems including a cancer cell model, primary immune cells, and a murine model of inflammation. This reporter strategy simplifies the synthesis without sacrificing the ability to monitor the nanoparticle conjugates. It is expected that this bioorthogonal reporter strategy can be used to understand nanoparticle interactions in biological systems, which will facilitate the translation of these technologies to the clinics.