z-logo
Premium
Mechanism and Functionality of Pnictogen Dual Aromaticity in Pentazolate Crystals
Author(s) -
Zhang Lei,
Yao Chuang,
Yu Yi,
Wang Xing,
Sun Chang Q.,
Chen Jun
Publication year - 2019
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.201900674
Subject(s) - pnictogen , aromaticity , chemistry , protonation , computational chemistry , chemical physics , counterion , crystallography , ion , crystal (programming language) , stereochemistry , condensed matter physics , physics , organic chemistry , molecule , superconductivity , computer science , programming language
Our recent work ( J. Phys. Chem. Lett . 2019 , 10 , 2378) reported the discovery of the abnormal pnictogen dual aromaticity (π and σ) in cyclo ‐N 5 − , which makes the anion unstable in nature but confers enhanced stability in sufficiently acid solution. Herein, we present systematic quantum calculations on the structures, energetics and dynamics of the pentazolate salt and metal pentazolate hydrates, focusing on the mechanism and functionality of the pnictogen dual aromaticity in these crystals, which are verified by experiments. We find that owning a net charge of − e is crucial to the formation of the dual aromaticity and the stabilization of the cyclo ‐N 5 − . The competition between the dual aromaticity and the proton affinity drives the cyclo ‐N 5 − to be unreactive to acid and remain unprotonated in these crystals. We decompose the crystal packing effect into pure mechanical compression and interspecies nonbonding interactions, and figure out that the type and number of the adjacent counterions of the cyclo ‐N 5 − anion, instead of the compression effect, accounts for the protonation state reversion in the vacuum and in the crystal. The current work supports our original conclusion ( Science 2018 , 359 , eaas8953) and is expected to provide compelling evidence against the current debate on the cyclo ‐N 5 − stability ( Science 2018 , 359 , eaao3672; J. Phys. Chem. Lett . 2018 , 9 , 7137; J. Am. Chem. Soc . 2019 , 141 , 2984).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here