z-logo
Premium
Chemoinformatic Approaches To Predict the Viscosities of Ionic Liquids and Ionic Liquid‐Containing Systems
Author(s) -
Carrera Gonçalo V. S. M.,
Nunes da Ponte Manuel,
Rebelo Luís P. N.
Publication year - 2019
Publication title -
chemphyschem
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.016
H-Index - 140
eISSN - 1439-7641
pISSN - 1439-4235
DOI - 10.1002/cphc.201900593
Subject(s) - ionic liquid , chemistry , ionic bonding , organic chemistry , ion , catalysis
Modelling, predicting, and understanding the factors influencing the viscosities of ionic liquids and related mixtures are sequentially checked in this work. The molecular maps of atom‐level properties (MOLMAP codification system) is adapted for a straightforward inclusion of ionic liquids and mixtures containing ionic liquids. Random Forest models have been tested in this context and an optimal model was selected. The interpretability of the selected Random Forest model is highlighted with selected structural features that might contribute to identify low viscosities. The constructed model is able to recognize the influence of different structural variables, temperature, and pressure for a correct classification of the different systems. The codification and interpretation systems are highlighted in this work.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here